ISSN 0862-5468 (Print), ISSN 1804-5847 (online)

 Information
Home
Publisher
Publication policy
Editorial board
Editors
Impact factor

Online submission
Author guidelines
Instruction for reviewers
Download instructions
 List of Content
Volume 59, 2015
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Volume 58, 2014
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Volume 57, 2013
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Previous Issues
  - 1995 - 2012

Ceramics-Silikáty 57 (1) 33-38 (2013)


THE INFLUENCE OF PHOSPHORUS SLAG ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF METAKAOLIN-BASED GEOPOLYMER PASTES

Soleimani M. A., Naghizadeh R., Mirhabibi A. R., Golestanifard F.

In this study, metakaolin plus different weight percent of phosphorus slag (10-100 wt. %) were used in preparation of geopolymer. The compressive strength, phase analysis and microstructure changes were compared with a metakaolin based geopolymer control sample. Results showed that the substitution of slag up to 40 wt. % instead of metakaolin increase the 28 days compressive strength (14.5 %) compared with control sample. This enhancement of strength is related to coexistence of geopolymeric gel and C‒S‒H gel or C‒A‒S‒H phase by XRD and FTIR study. In slag containing geopolymer samples some microcracks were observed at microstructure that established by volume change during formation of new phase or mismatching of unreacted particle with geopolymeric gel. These microcrack can dominate at high content of slag (above 40 wt. %) substitution and decrease the strength of samples. These results show that it is possible to produce geopolymer cement from waste phosphorus slages.

Keywords: Geopolymer, Metakaolin, Mechanical properties, Phosphorus slag

 Download the full version (PDF, 858 kB)

[Back]

 Webmaster l Journal Contact l Server Statistics l Last updated 11/15/15 l