ISSN 0862-5468 (Print), ISSN 1804-5847 (online)

 Information
Home
Publisher
Publication policy
Editorial board
Editors
Impact factor

Online submission
Author guidelines
Instruction for reviewers
Download instructions
 List of Content
Volume 59, 2015
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Volume 58, 2014
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Volume 57, 2013
  - Issue 1
  -
Issue 2
  - Issue 3
  - Issue 4
Previous Issues
  - 1995 - 2012

Ceramics-Silikáty 55 (4) 319-325 (2011)


THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

S. H. Badiee, S. Otroj

The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

Keywords: Refractory, Castable, Self-flowing, Nano-titania, Microstructure

 Download the full version (PDF, 1,77 MB)

[Back]

 Webmaster l Journal Contact l Server Statistics l Last updated 11/15/15 l